Statistics

Summer 2023

Lecture 3

Feb 19-8:47 AM

Jun 14-7:37 AM

Given: $\quad n=10, \quad \min =1, \quad \max =7, \sum x=36, \quad \sum x^{2}=162$

1) Range $=\operatorname{Max}-\operatorname{Min}=6 \quad$ 2) Midrange $=\frac{M_{\text {ax }}+M_{\text {in }}}{2}=4$ Range

- $\sum x \quad 36 \quad 3 . \quad$ rule-of-Thumb

4) Estimate $S \approx \frac{\text { Range }}{4}$
$\bar{x} \approx 4$
$S \approx \frac{6}{4}=1.5$
5) find $S=\sqrt{S^{2}}$
6) $S^{2}=\frac{n \sum x^{2}-\left(\sum x\right)^{2}}{n(n-1)}$

Use Empirical Rule, find
7) $\frac{\text { Usual Range }}{95 \% \text { Range }} \Rightarrow \bar{x} \pm 2 S=4 \pm 2(2)=0$ to 8
8) 99.7% Range $\Rightarrow \bar{x} \pm 3 S=4 \pm 3(2)=-2$ to 10

I randomly Selected 18 students and graded
their exams. Here are the Scores

52	58	60	65	69	1) $n=18$
73	76	76	76	79	2) Range $=100-52=48$
82	85	88	88	90	
95	98	100		3) Midrange $=\frac{100+52}{2}=76$	

4) Mode $=76$
5) Estimate $S \approx \frac{\text { Range }}{4}=\frac{48}{4}=12$ Range Rule-of - Thumb
6) Make STEM Plot (Data must be Sorted)

5	2	8		
6	0	5	9	
7	3	6	6	9
8	2	5	8	8
9	0	5	8	
10	0			

7) How many data elements are below 70? 5
8) what \% of data elements are below 70?

About 28\% are
below 70.
we can verify that $\sum x=1410 \dot{\varepsilon} . \sum x^{2}=113718$ find
9) $\bar{x}=\frac{\sum x}{n}=\frac{1410}{18}$
10) $S^{2}=\frac{n \sum x^{2}-\left(\sum x\right)^{2}}{n(n-1)}$

$$
\begin{aligned}
& =78 . \overline{3}=\sqrt{78} \\
& =\sqrt{S^{2}} \\
& =\sqrt{192.235}=13.865=\frac{18(18-1)}{388}=140^{2}
\end{aligned}
$$

11) $S=\sqrt{S^{2}}$

$$
s \approx 14
$$

using Empirical Rule, find
12) 68% Range
13) Usual Range

$$
\begin{aligned}
& \bar{x} \pm S \\
& =78 \pm 14 \Rightarrow 64 \text { to } 92
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x} \pm 2 S \\
= & 78 \pm 2(14) \\
= & 50 \text { to } 106
\end{aligned}
$$

Class QE 3
Given: $\quad n=8, \quad \sum x=69, \quad \sum x^{2}=627$
find (Round 3-decimal)

$$
\text { 1) } \bar{x}=\frac{\sum x}{n}=\frac{69}{8}=8.625
$$

$$
\text { 2) } \begin{aligned}
S^{2} & =\frac{n \Sigma x^{2}-\left(\sum x\right)^{2}}{n(n-1)} \\
& =\frac{8.627-69^{2}}{8(8-1)}=\frac{255}{56}
\end{aligned}
$$

3) $S=\sqrt{S^{2}}=\sqrt{4.554}=2.134$

$$
=4.554
$$

Round \bar{x} ह. S to whole \#, use empirical rule to find 68% Range Usual Range $\bar{x} \pm S=9 \pm 2 \Rightarrow 7 T_{0} 11$

$$
\begin{aligned}
& 95 \% \text { Range } \\
& \bar{x} \pm 2 S=9 \pm 2(2) \\
& \Rightarrow 5 \text { to } 13
\end{aligned}
$$

99.7\%. Range

$$
\begin{aligned}
& \text { 4.7/. Range } \\
& \bar{x} \pm 3 S=9 \pm 3(2) \Rightarrow 3 \text { to } 15
\end{aligned}
$$

Suppose 40 nurses had a mean montilly Salary of $\$ 6200$ with Standard deviation of $\$ 400$.
1) Lisa makes $\$ 6875 /$ month. What is her Z-Score. $Z=\frac{x-\bar{x}}{S}=\frac{6875-6200}{400}$ Lisa's Salary is Usual $-2<7<2$ $Z=1.688$
Suppose 40 Salesmen had a mean Salary of $\$ 5800$ with Standard deviation of $\$ 500$.
2) Jose makes $\$ 6875$, just like Lisa. what is his z-Score? $z=\frac{x-\bar{x}}{s}$ $6875-5800$
Jose's Salary is 500 unusval (high) \qquad $z>2$ Jase is doing much better.
3) Tom is also a nurse, his Z-Sore
is -1.6 . Find his Salary. $\left\lvert\, \begin{aligned} & Z=\frac{x-\bar{x}}{S} \quad-1.6=\frac{x-6200}{400} \\ & x-6200=-1.6(400) \quad \text { cross-multiply, } \end{aligned}\right.$
$x=-1.6(400)+6200 \quad$ Solve for x.
$x=\$ 5560$

TI Instructions

1) To clear the Screen
clear
2) To clear all lists. [nd 4 4:ClearAlllists

Enter
3) To quit
and MODE
4) To reset all lists. STAT Edit

How to store data elements in a list.
Store the following Sample in a List.

How to Sort a list:

Now view LI
and 1 Enter $\left\{\begin{array}{lllll}1 & 2 & 3 & 8 & 10\end{array}\right\}$

Jun 14-9:44 AM

I randomly selected 10 students, here are their ages:

$$
\begin{array}{lllll}
25 & 30 & 24 & 18 & 32 \\
20 & 28 & 40 & 19 & 35
\end{array}
$$

Store them in LI
STAT

quit $\dot{\varepsilon}$ clear Screen End Mode clear
Let's view L1
and If Enter $\left\{\begin{array}{lllll}25 & 30 & 24 & 18 & 32\end{array} \Rightarrow\right.$

$$
[\Delta] \square
$$

Jun 14-10:00 AM

Jun 14-10:16 AM

Complete the following chart

class limits class MP	class F	
$15-27$	21	3
$28-40$	34	7
$41-53$	47	10
$54-66$	60	5

1) 4 Rows- 4 classes
2) $n=\sum f=$ \square
3) $\mathrm{CW}=$ \square

$$
\begin{aligned}
& 28-15=13 \\
& 41-28=13
\end{aligned}
$$

$54-41=13$

5) Draw Freq; Polygon

How to find \bar{x}, S, and n for grouped data.

1) clear all lists.
2) Reset all lists.

Jun 14-10:52 AM

Find \bar{x}, S, and η using class $M P$. class F.

1) clear all lists.
2) Reset all lists.
3) class $M P \rightarrow L 1$, class $F \rightarrow L 2$

$L 1$	$L 2$
22.5	4
32.5	8
42.5	13
52.5	5

STAT \rightarrow CALL
1:1 -Var stats
with Menu
List: L1
Freqhist:La
calculate
No Menu
L1, L2 enter 7

$$
\bar{x}=38.8 \overline{3}
$$

$$
S=S_{x}=9.279
$$

find S^{2} in reduced fraction.

$$
n=30
$$

$$
\begin{aligned}
& \text { VARS } 5 \text { : Statistics } 3: S_{x} \text { Enter } 86.092 \\
& \text { MATH } 1: \frac{7490}{87}
\end{aligned}
$$

Jun 14-11:14 AM

I randomly Selected 25 exams, and here are the Scores:

4) Now View LI, and make

$$
\begin{array}{l|ll}
5 & 05 \\
6 & 03 & 79 \\
7 & 00 & 55589 \\
8 & 0248 \\
9 & 0022349 \\
10 & 0
\end{array}
$$

$$
\begin{array}{l|ll}
5 & 05 \\
6 & 03 & 79 \\
7 & 00 & 55589 \\
8 & 0248 \\
9 & 00 & 22349 \\
10 & 0
\end{array}
$$

5) How many data elements are below 70? 6
6) what $\%$ of data elements are below 70?

$$
\frac{6}{25} \cdot 100 \Rightarrow 24 \%
$$

Find \bar{x}, S, and n.

Jun 14-11:35 AM
find S^{2} in reduced fraction

